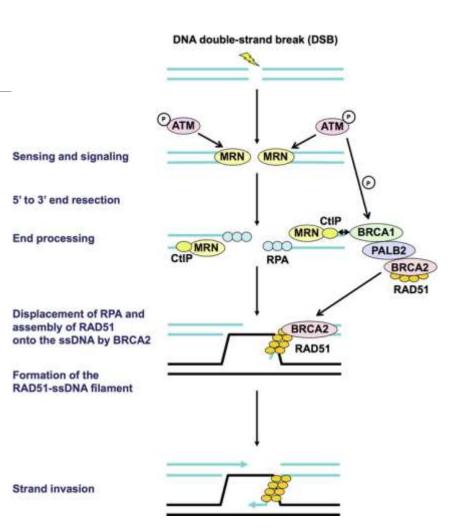
Targeting Ataxia-Telangiectasia Mutated to Enhance the Radiation Response of Glioblastoma

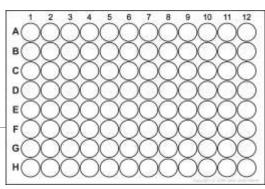
NIKITA GUPTA


RADIATION ONCOLOGY BRANCH, NATIONAL INSTITUTES OF HEALTH

Glioblastoma

- Glioblastoma (GBM) is the most prevalent type of brain cancer
 - 12,390 cases estimated to occur in 2017
- Standard of care
 - Surgical resection
 - Radiation therapy
 - Chemotherapy with temozolomide (TMZ)
- Even with this treatment, the median patient survival remains between 12 and 15 months
- By sensitizing tumor cells to radiotherapy, we can increase the effectiveness of treatment and the patient survival of the disease

DNA Damage Response


- Radiation therapy produces DNA damage in different forms
 - The most lethal form of damage, double-strand breaks (DSBs), is mainly repaired by two pathways
 - Non-homologous end-joining (NHEJ) involves the protein DNA dependent protein kinase (DNApk)
 - Faster, more error-prone
 - Homologous recombination (HR) involves the protein ataxia telangiectasia mutated (ATM)
 - Slower, error-free
- My Project: Evaluate the effect of ATM inhibitor KU60019 on radiation response of U251 tumor cells and normal astrocytes

Methods

- **Cytotoxicity** Amount of cell kill the drug produces at different concentrations over time
 - 96 well plate
 - 0.5, 1, 3, 5, 10 uM KU60019 for u251s
 - 0.1, 1, 3, 5, 10, 50, 100 uM KU60019 for NA
 - 24, 48 and 72 hours
- Western Blotting Changes in protein levels in response to KU60019 and IR
 - Tested the effect of drug with irradiation on U251 tumor cells
 - Concentrations of 1, 3, and 5 uM
 - Collected samples 30m and 24h after IR
- **yH2AX Immunofluorescence assay** Measured how successful the cells were in repairing double strand breaks (DSBs) after IR
 - 4-well chamber slides
 - U251s and normal astrocytes, 3 uM KU60019

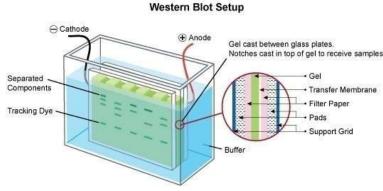
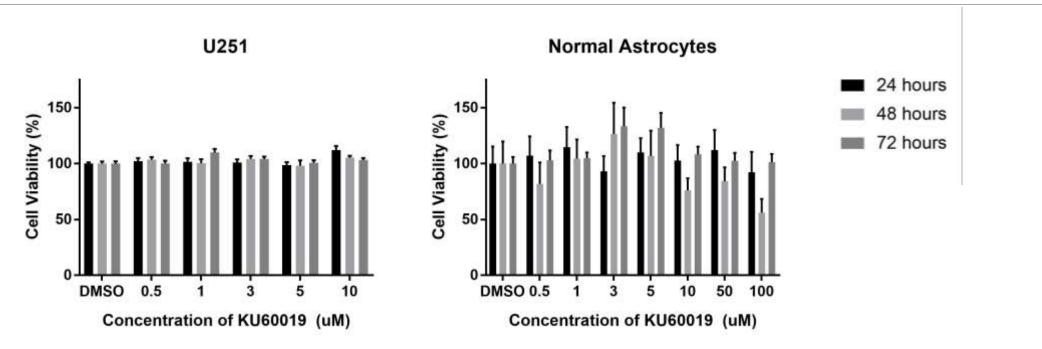
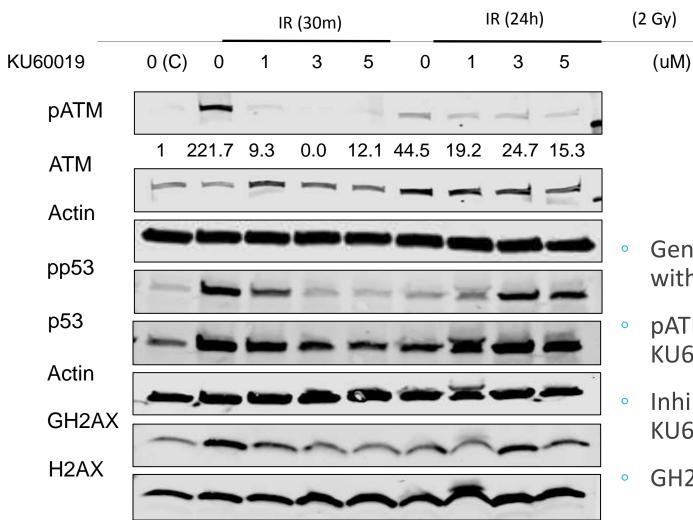
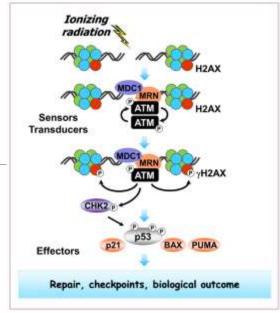



Diagram 1: Illustration of Western Blot Setup.

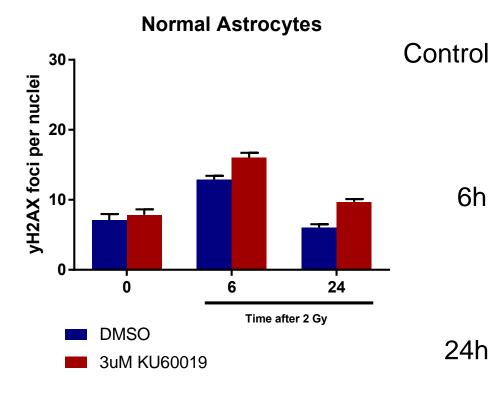
http://www.antibodies-online.com/resources/17/1224/western-blotting-immunoblotgel-electrophoresis-for-proteins/


https://ibidi.com/open-slides-dishes/38--slide-4-well-ph.html


Results: Cytotoxicity

- KU60019 showed no toxicity to the U251s
- Normal Astrocytes were more sensitive to KU60019, with cellular viability decreasing at higher drug concentrations – this helped us choose a drug dose for our experiments
 - Most cell kill with normal astrocytes occurred at 48 hours at 10, 50 and 100uM we don't want this

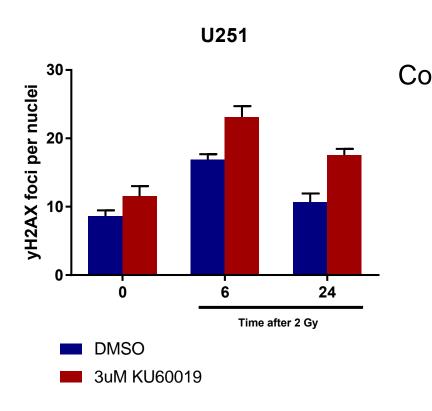
Results: Western Blots

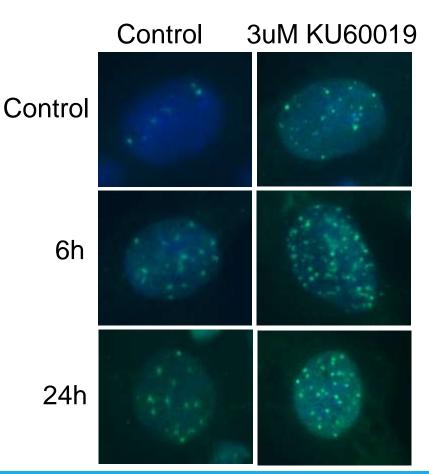


http://www.mdpi.com/1422-0067/14/11/22409/htm

- Gene silencing of pATM achieved completely at 30m with KU60019 concentration of 3uM
- pATM levels began increasing at 1 and 3uM
 KU60019 at 24 hours
- Inhibits pp53 and most effectively at 1, 3 and 5 uM KU60019 at 30m
- GH2AX and p53 followed similar patterns

Results: yH2AX assay




6h 24h

Control 3uM KU60019

- General increase in foci within time points from control to treated samples
 - Not statistically significant
 - KU60019 does not create significant amounts of DNA damage in NA at this concentration

Results: yH2AX assay

- Difference in the number of foci at 24 hours compared to non-irradiated cells
 - Statistically significant
- Tells us the drug at 3uM is able to keep U251s from repairing DSBs

Summary

- KU60019 showed no toxicity to U251 cells at the concentrations tested and therefore would not be sufficient by itself – it needs to be used with radiation to be effective
- From the concentrations we tested, KU60019 is an effective inhibitor. It works best at 3uM but also shows activity at lower concentrations when U251 cells are irradiated at 2Gy
- As shown in the yH2AX assay, KU60019 prevents U251 cells from successfully repairing DSBs, which could make it an effective radiosensitizer

What I learned

- Research is tiring
- You have to stay REALLY organized
 - It's impossible to keep track of everything in your head when you're doing multiple experiments at once!
- You need to be super patient
- I'm awful at calculating dilutions
- It's really easy to mess something up every time
 - You have to accept mistakes!!
- The people aren't intimidating!!
 - Everyone's so friendly and the people are a huge reason for why I had such a good experience

Acknowledgements

Kevin Camphausen, M.D.

Principal Investigator, Branch Chief of Radiation Oncology, National Cancer Institute

Jennifer Lee, Ph.D

Postdoctoral Fellow (CRTA), National Cancer Institute

Dr. Hannah Krug

Director of Science Research, Holton-Arms

References

- Lee JA, Ayat N, Tandle A, Lu ZR, Camphausen K (2016). Silencing of DNA repair proteins with ECO/siRNA nanoparticles for the enhancement of radiation response in glioblastoma. American Association for Cancer Research Special Conference on Engineering and Physical Sciences in Oncology, Boston, MA, June 25-28.
- "Brain Tumor Statistics." *Brain Tumor Statistics | American Brain Tumor Association*. American Brain Tumor Association, 2014. Web. 31 July 2017.
- Hosoya, Noriko, and Kiyoshi Miyagawa. "Targeting DNA Damage Response in Cancer Therapy." *Cancer Science* 105.4 (2014): 370–388. *PMC*. Web. 27 July 2017.